If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100t^2-1=0
a = 100; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·100·(-1)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20}{2*100}=\frac{-20}{200} =-1/10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20}{2*100}=\frac{20}{200} =1/10 $
| 3=g-72/5 | | 6^(2x)=17 | | 1/4x-3=7 | | 3x-6+2x=8x-3 | | 6^(2x(=17 | | P2+12p=-32 | | -7x+14=7/3 | | 1/8(8x=15)=24 | | −34+z=54-34+z=54 | | 6^(2x+1)=17 | | 56x-1/3=-2 | | 0=24x-0.4x^2 | | 7x^2+140=) | | 4x+5=2x+47 | | Y=1/2x+16 | | -4(5x+12)=-2(10x+24 | | s+9/5=7 | | 7-7b=14 | | .5+.10m=20 | | 140p+160p+200p=51,000 | | 140p+160p+209p=51,000 | | p/3+10=18 | | 3(x-2)=6(2x+1) | | m=-8/9;(-1,0) | | (2.8)x^2-25x+34=0 | | 7=w/4+4 | | |2x+3|=|x-2| | | 1/4(4-x)=-3(10+2x) | | x=5/6=7/8 | | t/36-6=1/6 | | 140p+160p=51,000 | | 8x+4(2x)-3x-5=142 |